cloud data warehouse

Results 1 - 25 of 46Sort Results By: Published Date | Title | Company Name
Published By: Amazon Web Services     Published Date: Jul 25, 2018
IDC’s research has shown the movement of most IT workloads to the cloud in the coming years. Yet, with all the talk about enterprises moving to the cloud, some of them still wonder if such a move is really cost effective and what business benefits may result. While the answers to such questions vary from workload to workload, one area attracting particular attention is that of the data warehouse. Many enterprises have substantial investments in data warehousing, with an ongoing cost to managing that resource in terms of software licensing, maintenance fees, operational costs, and hardware. Can it make sense to move to a cloud-based alternative? What are the costs and benefits? How soon can such a move pay itself off? Download now to find out more.
Tags : 
    
Amazon Web Services
Published By: Amazon Web Services     Published Date: Jul 25, 2018
Die Recherchen von IDC haben ergeben, dass in den nächsten Jahren die meisten IT-Workloads in die Cloud verschoben werden. Doch neben all den positiven Berichten über Unternehmen, die in die Cloud umziehen, gibt es auch Unternehmen, die sich noch immer fragen, ob ein solcher Wechsel wirklich kosteneffizient ist und welche Vorteile sich aus einem solchen ergeben. Während die Antworten auf solche Fragen von Workload zu Workload variieren, gibt es ein Element, das besondere Aufmerksamkeit auf sich zieht: das Data-Warehouse.
Tags : 
    
Amazon Web Services
Published By: Amazon Web Services     Published Date: Sep 05, 2018
Big data alone does not guarantee better business decisions. Often that data needs to be moved and transformed so Insight Platforms can discern useful business intelligence. To deliver those results faster than traditional Extract, Transform, and Load (ETL) technologies, use Matillion ETL for Amazon Redshift. This cloud- native ETL/ELT offering, built specifically for Amazon Redshift, simplifies the process of loading and transforming data and can help reduce your development time. This white paper will focus on approaches that can help you maximize your investment in Amazon Redshift. Learn how the scalable, cloud- native architecture and fast, secure integrations can benefit your organization, and discover ways this cost- effective solution is designed with cloud computing in mind. In addition, we will explore how Matillion ETL and Amazon Redshift make it possible for you to automate data transformation directly in the data warehouse to deliver analytics and business intelligence (BI
Tags : 
    
Amazon Web Services
Published By: Amazon Web Services     Published Date: Sep 05, 2018
Just as Amazon Web Services (AWS) has transformed IT infrastructure to something that can be delivered on demand, scalably, quickly, and cost-effectively, Amazon Redshift is doing the same for data warehousing and big data analytics. Redshift offers a massively parallel columnar data store that can be spun up in just a few minutes to deal with billions of rows of data at a cost of just a few cents an hour. It’s designed for speed and ease of use — but to realize all of its potential benefits, organizations still have to configure Redshift for the demands of their particular applications. Whether you’ve been using Redshift for a while, have just implemented it, or are still evaluating it as one of many cloud-based data warehouse and business analytics technology options, your organization needs to understand how to configure it to ensure it delivers the right balance of performance, cost, and scalability for your particular usage scenarios. Since starting to work with this technolog
Tags : 
    
Amazon Web Services
Published By: Attunity     Published Date: Jan 14, 2019
This whitepaper explores how to automate your data lake pipeline to address common challenges including how to prevent data lakes from devolving into useless data swamps and how to deliver analytics-ready data via automation. Read Increase Data Lake ROI with Streaming Data Pipelines to learn about: • Common data lake origins and challenges including integrating diverse data from multiple data source platforms, including lakes on premises and in the cloud. • Delivering real-time integration, with change data capture (CDC) technology that integrates live transactions with the data lake. • Rethinking the data lake with multi-stage methodology, continuous data ingestion and merging processes that assemble a historical data store. • Leveraging a scalable and autonomous streaming data pipeline to deliver analytics-ready data sets for better business insights. Read this Attunity whitepaper now to get ahead on your data lake strategy in 2019.
Tags : 
data lake, data pipeline, change data capture, data swamp, hybrid data integration, data ingestion, streaming data, real-time data, big data, hadoop, agile analytics, cloud data lake, cloud data warehouse, data lake ingestion, data ingestion
    
Attunity
Published By: Attunity     Published Date: Feb 12, 2019
Read this checklist report, with results based on the Eckerson Group’s survey and the Business Application Research Center (BARC), on how companies using the cloud for data warehousing and BI has increased by nearly 50%. BI teams must address multiple issues including data delivery, security, portability and more before moving to the cloud for its infinite scalability and elasticity. Read this report to understand all 7 seven considerations – what, how and why they impact the decision to move to the cloud.
Tags : 
cloud, business intelligence, analytics, cloud data, data lake, data warehouse automation tools, dwa, data warehouse, security and compliance, data movement, hybrid cloud, hybrid cloud environment, cross-platform automation, portability
    
Attunity
Published By: Attunity     Published Date: Feb 12, 2019
How can enterprises overcome the issues that come with traditional data warehousing? Despite the business value that data warehouses can deliver, too often they fall short of expectations. They take too long to deliver, cost too much to build and maintain, and cannot keep pace with changing business requirements. If this all rings a bell, check out Attunity’s knowledge brief on data warehouse automation with Attunity Compose. The solution automates the design, build, and deployment of data warehouses, data marts and data hubs, enabling more agile and responsive operation. The automation reduces time-consuming manual coding, and error-prone repetitive tasks. Read the knowledge brief to learn more about your options.
Tags : 
dwa, data warehouse automation, etl development, extract transform load tools, etl tools, data warehouse, data marts, data hubs data warehouse lifecycle, data integration, change management, data migration, consolidating data, cloud data warehousing, data warehouse design, attunity compose
    
Attunity
Published By: AWS     Published Date: Sep 04, 2018
Just as Amazon Web Services (AWS) has transformed IT infrastructure to something that can be delivered on demand, scalably, quickly, and cost-effectively, Amazon Redshift is doing the same for data warehousing and big data analytics. Redshift offers a massively parallel columnar data store that can be spun up in just a few minutes to deal with billions of rows of data at a cost of just a few cents an hour. It’s designed for speed and ease of use — but to realize all of its potential benefits, organizations still have to configure Redshift for the demands of their particular applications. Whether you’ve been using Redshift for a while, have just implemented it, or are still evaluating it as one of many cloud-based data warehouse and business analytics technology options, your organization needs to understand how to configure it to ensure it delivers the right balance of performance, cost, and scalability for your particular usage scenarios. Since starting to work with this technology
Tags : 
    
AWS
Published By: AWS     Published Date: Sep 05, 2018
Big data alone does not guarantee better business decisions. Often that data needs to be moved and transformed so Insight Platforms can discern useful business intelligence. To deliver those results faster than traditional Extract, Transform, and Load (ETL) technologies, use Matillion ETL for Amazon Redshift. This cloud- native ETL/ELT offering, built specifically for Amazon Redshift, simplifies the process of loading and transforming data and can help reduce your development time. This white paper will focus on approaches that can help you maximize your investment in Amazon Redshift. Learn how the scalable, cloud- native architecture and fast, secure integrations can benefit your organization, and discover ways this cost- effective solution is designed with cloud computing in mind. In addition, we will explore how Matillion ETL and Amazon Redshift make it possible for you to automate data transformation directly in the data warehouse to deliver analytics and business intelligence (BI
Tags : 
    
AWS
Published By: BMC ASEAN     Published Date: Dec 18, 2018
Big data projects often entail moving data between multiple cloud and legacy on-premise environments. A typical scenario involves moving data from a cloud-based source to a cloud-based normalization application, to an on-premise system for consolidation with other data, and then through various cloud and on-premise applications that analyze the data. Processing and analysis turn the disparate data into business insights delivered though dashboards, reports, and data warehouses - often using cloud-based apps. The workflows that take data from ingestion to delivery are highly complex and have numerous dependencies along the way. Speed, reliability, and scalability are crucial. So, although data scientists and engineers may do things manually during proof of concept, manual processes don't scale.
Tags : 
    
BMC ASEAN
Published By: Dell EMC     Published Date: Nov 09, 2015
While the EDW plays an all-important role in the effort to leverage big data to drive business value, it is not without its challenges. In particular, the typical EDW is being pushed to its limits by the volume, velocity and variety of data. Download this whitepaper and see how the Dell™ | Cloudera™ | Syncsort™ Data Warehouse Optimization – ETL Offload Reference Architecture can help.
Tags : 
    
Dell EMC
Published By: Google     Published Date: Oct 26, 2018
Modernizing your data warehouse is one way to keep up with evolving business requirements and harness new technology. For many companies, cloud data warehousing offers a fast, flexible, and cost-effective alternative to traditional on-premises solutions. This report sponsored by Google Cloud, TDWI examines the rise of cloud-based data warehouses and identifies associated opportunities, benefits, and best practices. Learn more about cloud data warehousing with strategic advice from Google experts.
Tags : 
    
Google
Previous   1 2    Next    
Search      

Add Research

Get your company's research in the hands of targeted business professionals.


Featured FREE Resource: